Rational Krylov for Stieltjes matrix functions: convergence and pole selection

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection∗

Matrix functions are a central topic of linear algebra, and problems of their numerical approximation appear increasingly often in scientific computing. We review various rational Krylov methods for the computation of large-scale matrix functions. Emphasis is put on the rational Arnoldi method and variants thereof, namely, the extended Krylov subspace method and the shift-and-invert Arnoldi met...

متن کامل

Rational Krylov sequences and Orthogonal Rational Functions

In this paper we study the relationship between spectral decomposition, orthogonal rational functions and the rational Lanczos algorithm, based on a simple identity for rational Krylov sequences.

متن کامل

Convergence of Restarted Krylov Subspace Methods for Stieltjes Functions of Matrices

To approximate f(A)b—the action of a matrix function on a vector—by a Krylov subspace method, restarts may become mandatory due to storage requirements for the Arnoldi basis or due to the growing computational complexity of evaluating f on a Hessenberg matrix of growing size. A number of restarting methods have been proposed in the literature in recent years and there has been substantial algor...

متن کامل

Convergence of the Iterative Rational Krylov Algorithm

The iterative rational Krylov algorithm (IRKA) of Gugercin et al. (2008) [8] is an interpolatory model reduction approach to the optimal H2 approximation problem. Even though the method has been illustrated to show rapid convergence in various examples, a proof of convergence has not been provided yet. In this note, we show that in the case of state-space-symmetric systems, IRKA is a locally co...

متن کامل

A Chebyshev Polynomial Rate-of-Convergence Theorem for Stieltjes Functions

The theorem proved here extends the author's previous work on Chebyshev series [4] by showing that if f(x) is a member of the class of so-called "Stieltjes functions" whose asymptotic power series 2 anx" about x = 0 is such that ttlogjaj _ hm —;-= r, «log n then the coefficients of the series of shifted Chebyshev polynomials on x e [0, a],2b„Tf(x/a), satisfy the inequality 2 . m log | (log |M) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BIT Numerical Mathematics

سال: 2020

ISSN: 0006-3835,1572-9125

DOI: 10.1007/s10543-020-00826-z